A global land cover training dataset from 1984 to 2020

facebook - A global land cover training dataset from 1984 to 2020facebook - A global land cover training dataset from 1984 to 2020linkedin - A global land cover training dataset from 1984 to 2020linkedin - A global land cover training dataset from 1984 to 2020whatsapp - A global land cover training dataset from 1984 to 2020whatsapp - A global land cover training dataset from 1984 to 2020x - A global land cover training dataset from 1984 to 2020x - A global land cover training dataset from 1984 to 2020a2a - A global land cover training dataset from 1984 to 2020a2a - A global land cover training dataset from 1984 to 2020

Stanimirova, Radost; Tarrio, Katelyn; Turlej, Konrad; McAvoy, Kristina; Stonebrook, Sophia; Hu, Kai-Ting; Arévalo, Paulo; Bullock, Eric L.; Zhang, Yingtong; Woodcock, Curtis E.; Olofsson, Pontus; Zhu, Zhe; Barber, Christopher P.; Souza, Casrlos M.; Chen, Shijuan; Wang, Jonathan A.; Mensah, Foster; Calderon-Loor, Marco; Hadjikakou, Michalis; Bryan, Brett A.; Graesser, Jordan; Beyene, Dereje L.; Mutasha, Brian; Siame, Sylvester; Siampale, Abel; Friedl, Mark A. A global land cover training dataset from 1984 to 2020. Nature, 2023. https://www.nature.com/articles/s41597-023-02798-5

Abstract: State-of-the-art cloud computing platforms such as Google Earth Engine (GEE) enable regional-to-global land cover and land cover change mapping with machine learning algorithms. However, collection of high-quality training data, which is necessary for accurate land cover mapping, remains costly and labor-intensive. To address this need, we created a global database of nearly 2 million training units spanning the period from 1984 to 2020 for seven primary and nine secondary land cover classes. Our training data collection approach leveraged GEE and machine learning algorithms to ensure data quality and biogeographic representation. We sampled the spectral-temporal feature space from Landsat imagery to efciently allocate training data across global ecoregions and incorporated publicly available and collaborator-provided datasets to our database. To refect the underlying regional class distribution and post-disturbance landscapes, we strategically augmented the database. We used a machine learning-based cross-validation procedure to remove potentially mis-labeled training units. Our training database is relevant for a wide array of studies such as land cover change, agriculture, forestry, hydrology, urban development, among many others.

Download

facebook - A global land cover training dataset from 1984 to 2020facebook - A global land cover training dataset from 1984 to 2020linkedin - A global land cover training dataset from 1984 to 2020linkedin - A global land cover training dataset from 1984 to 2020whatsapp - A global land cover training dataset from 1984 to 2020whatsapp - A global land cover training dataset from 1984 to 2020x - A global land cover training dataset from 1984 to 2020x - A global land cover training dataset from 1984 to 2020a2a - A global land cover training dataset from 1984 to 2020a2a - A global land cover training dataset from 1984 to 2020

This post was published on 7 de dezembro de 2023

AddThis Website Tools

Notícias recentes

Índice de Progresso Social Brasil 2025Índice de Progresso Social Brasil 2025

Índice de Progresso Social Brasil 2025

Título Índice de Progresso Social Brasil 2025 Autores Melissa Wilm Daniel Santos Beto Veríssimo Marcelo…

29 de maio de 2025
Sistema de Alerta de Desmatamento (SAD) – Abril de 2025Sistema de Alerta de Desmatamento (SAD) – Abril de 2025

Sistema de Alerta de Desmatamento (SAD) – Abril de 2025

Amorim, L., Ferreira, R., Dias, M., Souza Jr., C., & Veríssimo, A. Sistema de Alerta…

29 de maio de 2025
Fatos da Amazônia 2025Fatos da Amazônia 2025

Fatos da Amazônia 2025

Título Fatos da Amazônia 2025 Autores Daniel Santos Manuele Lima Agatha Vilhena Beto Veríssimo Caíque…

30 de abril de 2025
Sistema de Alerta de Desmatamento (SAD) – Março de 2025Sistema de Alerta de Desmatamento (SAD) – Março de 2025

Sistema de Alerta de Desmatamento (SAD) – Março de 2025

Amorim, L., Ferreira, R., Dias, M., Souza Jr., C., & Veríssimo, A. Sistema de Alerta…

25 de abril de 2025
A Vocação da Restauração Florestal na Amazônia com Base na Vegetação SecundáriaA Vocação da Restauração Florestal na Amazônia com Base na Vegetação Secundária

A Vocação da Restauração Florestal na Amazônia com Base na Vegetação Secundária

Título A Vocação da Restauração Florestal na Amazônia com Base na Vegetação Secundária Autores Jayne…

30 de março de 2025
Sistema de Alerta de Desmatamento (SAD) – Fevereiro de 2025Sistema de Alerta de Desmatamento (SAD) – Fevereiro de 2025

Sistema de Alerta de Desmatamento (SAD) – Fevereiro de 2025

Amorim, L., Ferreira, R., Dias, M., Souza Jr., C., & Veríssimo, A. Sistema de Alerta…

27 de março de 2025