Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classification

facebook - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationfacebook - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationlinkedin - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationlinkedin - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationwhatsapp - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationwhatsapp - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationx - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationx - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationa2a - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationa2a - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classification

Sales, Marcio H. R.; Bruin, Sytze de; Souza, Carlos; Herold, Martin. Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classification. IEEE Transactions on Geoscience and Remote Sensing, Volume 60, 09 June 2021. DOI: 10.1109/TGRS.2021.3080083

Abstract: Estimates of the area of land cover classes or land change are frequently calculated from land cover classification maps by counting the pixels labeled as each class in the map. This procedure is known to produce biased estimates of area for many widely used classification algorithms, including random forests. Poststratification estimation using the mapped classes as strata has been proposed to obtain unbiased estimates of the class areas. Still, the method requires additional sampling units, which may not be available or be the most efficient method depending on the application. Alternatively, consistent estimates of class areas can be obtained using class membership probabilities estimates from a random forest classification. This article demonstrates that, for a large sample and proper set of explanatory variables, the error of the predicted class membership probabilities obtained from a random forest classification converges to zero. Therefore, the expected class areas calculated from these probabilities converge to the population class areas. On average, the relative error of the expected class proportions computed by class membership probabilities from a random forests model was 40% points lower than the proportions estimated by pixel counting. Our proposed approach is also comparable to the area-adjusted method, which is currently considered the best practice by the remote sensing community. We recommend that class probability estimates area always retained and used for calculating expected class areas or area proportions based on our results. Our method reduces bias compared to statistics calculated by pixel counting and circumvents the need for poststratification area estimates under certain conditions.

Download

facebook - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationfacebook - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationlinkedin - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationlinkedin - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationwhatsapp - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationwhatsapp - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationx - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationx - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationa2a - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classificationa2a - Land Use and Land Cover Area Estimates From Class Membership Probability of a Random Forest Classification

This post was published on 9 de junho de 2021

AddThis Website Tools

Notícias recentes

Explosive growth of secondary roads is linked to widespread tropical deforestationExplosive growth of secondary roads is linked to widespread tropical deforestation

Explosive growth of secondary roads is linked to widespread tropical deforestation

Título Explosive growth of secondary roads is linked to widespread tropical deforestation Autores Jayden E.…

7 de março de 2025
Sistema de Alerta de Desmatamento (SAD) – Janeiro de 2025Sistema de Alerta de Desmatamento (SAD) – Janeiro de 2025

Sistema de Alerta de Desmatamento (SAD) – Janeiro de 2025

Amorim, L., Ferreira, R., Dias, M., Souza Jr., C., & Veríssimo, A. Sistema de Alerta…

21 de fevereiro de 2025
Resultados frigoríficos 2024Resultados frigoríficos 2024

Resultados frigoríficos 2024

Título Resultados frigoríficos 2024 Autores Instituto do Homem e Meio Ambiente da Amazônia (Imazon) Instituto…

5 de fevereiro de 2025
RESUMO EXECUTIVO – Cenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados do Programa Amazônia ProtegeRESUMO EXECUTIVO – Cenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados do Programa Amazônia Protege

RESUMO EXECUTIVO – Cenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados do Programa Amazônia Protege

Título RESUMO EXECUTIVO - Cenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados…

31 de janeiro de 2025
Cenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados do Programa Amazônia ProtegeCenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados do Programa Amazônia Protege

Cenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados do Programa Amazônia Protege

Título Cenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados do Programa Amazônia…

31 de janeiro de 2025
Sistema de Alerta de Desmatamento (SAD) – Dezembro de 2024Sistema de Alerta de Desmatamento (SAD) – Dezembro de 2024

Sistema de Alerta de Desmatamento (SAD) – Dezembro de 2024

Amorim, L., Santos, B., Ferreira, R., Ribeiro, J., Dias, M., Souza Jr., C., & Veríssimo,…

24 de janeiro de 2025