Landsat sub-pixel land cover dynamics in the Brazilian Amazon

facebook - Landsat sub-pixel land cover dynamics in the Brazilian Amazonfacebook - Landsat sub-pixel land cover dynamics in the Brazilian Amazonlinkedin - Landsat sub-pixel land cover dynamics in the Brazilian Amazonlinkedin - Landsat sub-pixel land cover dynamics in the Brazilian Amazonwhatsapp - Landsat sub-pixel land cover dynamics in the Brazilian Amazonwhatsapp - Landsat sub-pixel land cover dynamics in the Brazilian Amazonx - Landsat sub-pixel land cover dynamics in the Brazilian Amazonx - Landsat sub-pixel land cover dynamics in the Brazilian Amazona2a - Landsat sub-pixel land cover dynamics in the Brazilian Amazona2a - Landsat sub-pixel land cover dynamics in the Brazilian Amazon

Souza, Carlos M.; Oliveira, Luis; Filho, Jailson S.; Ferreira, Bruno; Fonseca, Antônio V.; Siqueira, João V. Landsat sub-pixel land cover dynamics in the Brazilian Amazon. Frontiers, 2023. https://www.frontiersin.org/articles/10.3389/ffgc.2023.1294552/full.

Abstract: The Brazilian Amazon land cover changes rapidly due to anthropogenic and climate drivers. Deforestation and forest disturbances associated with logging and fires, combined with extreme droughts, warmer air, and surface temperatures, have led to high tree mortality and harmful net carbon emissions in this region. Regional attempts to characterize land cover dynamics in this region focused on one or two anthropogenic drivers (i.e., deforestation and forest degradation). Land cover studies have also used a limited temporal scale (i.e., 10–15 years), focusing mainly on global and country-scale forest change. In this study, we propose a novel approach to characterize and measure land cover dynamics in the Amazon biome. First, we defined 10 fundamental land cover classes: forest, flooded forest, shrubland, natural grassland, pastureland, cropland, outcrop, bare and impervious, wetland, and water. Second, we mapped the land cover based on the compositional abundance of Landsat sub-pixel information that makes up these land cover classes: green vegetation (GV), non-photosynthetic vegetation, soil, and shade. Third, we processed all Landsat scenes with <50% cloud cover. Then, we applied a step-wise random forest machine learning algorithm and empirical decision rules to classify intra-annual and annual land cover classes between 1985 and 2022. Finally, we estimated the yearly land cover changes in forested and non-forested ecosystems and characterized the major change drivers. In 2022, forest covered 78.6% (331.9 Mha) of the Amazon biome, with 1.4% of secondary regrowth in more than 5 years. Total herbaceous covered 15.6% of the area, with the majority of pastureland (13.5%) and the remaining natural grassland. Water was the third largest land cover class with 2.4%, followed by cropland (1.2%) and shrubland (0.4%), with 89% overall accuracy. Most of the forest changes were driven by pasture and cropland conversion, and there are signs that climate change is the primary driver of the loss of aquatic ecosystems. Existing carbon emission models disregard the types of land cover changes presented in the studies. The twenty first century requires a more encompassing and integrated approach to monitoring anthropogenic and climate changes in the Amazon biome for better mitigation, adaptation, and conservation policies.

Download

facebook - Landsat sub-pixel land cover dynamics in the Brazilian Amazonfacebook - Landsat sub-pixel land cover dynamics in the Brazilian Amazonlinkedin - Landsat sub-pixel land cover dynamics in the Brazilian Amazonlinkedin - Landsat sub-pixel land cover dynamics in the Brazilian Amazonwhatsapp - Landsat sub-pixel land cover dynamics in the Brazilian Amazonwhatsapp - Landsat sub-pixel land cover dynamics in the Brazilian Amazonx - Landsat sub-pixel land cover dynamics in the Brazilian Amazonx - Landsat sub-pixel land cover dynamics in the Brazilian Amazona2a - Landsat sub-pixel land cover dynamics in the Brazilian Amazona2a - Landsat sub-pixel land cover dynamics in the Brazilian Amazon

This post was published on 4 de dezembro de 2023

AddThis Website Tools

Notícias recentes

Fatos da Amazônia 2025Fatos da Amazônia 2025

Fatos da Amazônia 2025

Título Fatos da Amazônia 2025 Autores Daniel Santos Manuele Lima Agatha Vilhena Beto Veríssimo Caíque…

30 de abril de 2025
Sistema de Alerta de Desmatamento (SAD) – Março de 2025Sistema de Alerta de Desmatamento (SAD) – Março de 2025

Sistema de Alerta de Desmatamento (SAD) – Março de 2025

Amorim, L., Ferreira, R., Dias, M., Souza Jr., C., & Veríssimo, A. Sistema de Alerta…

25 de abril de 2025
A Vocação da Restauração Florestal na Amazônia com Base na Vegetação SecundáriaA Vocação da Restauração Florestal na Amazônia com Base na Vegetação Secundária

A Vocação da Restauração Florestal na Amazônia com Base na Vegetação Secundária

Título A Vocação da Restauração Florestal na Amazônia com Base na Vegetação Secundária Autores Jayne…

30 de março de 2025

Sistema de Alerta de Desmatamento (SAD) – Fevereiro de 2025

Amorim, L., Ferreira, R., Dias, M., Souza Jr., C., & Veríssimo, A. Sistema de Alerta…

27 de março de 2025

Lições da Expansão da Pecuária Bovina no Brasil (2000-2023) para uma Produção Sustentável e Eficiente

Título Lições da Expansão da Pecuária Bovina no Brasil (2000-2023) para uma Produção Sustentável e…

13 de março de 2025

Explosive growth of secondary roads is linked to widespread tropical deforestation

Título Explosive growth of secondary roads is linked to widespread tropical deforestation Autores Jayden E.…

7 de março de 2025