Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2

facebook - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2facebook - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2linkedin - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2linkedin - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2whatsapp - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2whatsapp - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2x - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2x - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2a2a - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2a2a - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2

Filho, Jailson S. de Souza; Damasceno, Camila; Cardoso, Dalton R. Ruy Secco; Souza Jr, Carlos. https://isprs-archives.copernicus.org/articles/XLVIII-3-2024/121/2024/

Abstract

The Amazon forest, the largest tropical forest in the world and marked by its rapid change in forest cover, has suffered from intense anthropogenic phenomena such as deforestation and forest degradation, this one caused mainly by fires and selective logging. This study explores a U-NET model to accurately identify selective logging infrastructure (roads, skid trails, storage yards) using Sentinel-2 imagery. Our goal is to improve the SIMEX (System for Monitoring Timber Harvesting) in the Brazilian Amazon, reducing the human workload and increasing the system’s accuracy. Data from 780 SIMEX registration polygons (2021–2022) were used, with stratified sampling creating a training data set. The U-NET model, optimized with specific hyperparameters and data augmentation, analyzed six spectral bands (two-year RGB). We achieved an F1 score of ~81% with high precision (73.7%) and recall (90.31%) on the test set, indicating strong performance and generalization. Our model excels at accurately predicting logging infrastructure and potential damage to forest canopies. It provides detailed detection of roads and stockyards, offering a comprehensive view compared to models that generalize explored areas. This refined approach increases its usefulness for forest conservation and management efforts.

Download

facebook - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2facebook - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2linkedin - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2linkedin - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2whatsapp - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2whatsapp - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2x - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2x - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2a2a - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2a2a - Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2

This post was published on 7 de novembro de 2024

AddThis Website Tools

Notícias recentes

Sistema de Alerta de Desmatamento (SAD) – Fevereiro de 2025Sistema de Alerta de Desmatamento (SAD) – Fevereiro de 2025

Sistema de Alerta de Desmatamento (SAD) – Fevereiro de 2025

Amorim, L., Ferreira, R., Dias, M., Souza Jr., C., & Veríssimo, A. Sistema de Alerta…

27 de março de 2025
Lições da Expansão da Pecuária Bovina no Brasil (2000-2023) para uma Produção Sustentável e EficienteLições da Expansão da Pecuária Bovina no Brasil (2000-2023) para uma Produção Sustentável e Eficiente

Lições da Expansão da Pecuária Bovina no Brasil (2000-2023) para uma Produção Sustentável e Eficiente

Título Lições da Expansão da Pecuária Bovina no Brasil (2000-2023) para uma Produção Sustentável e…

13 de março de 2025
Explosive growth of secondary roads is linked to widespread tropical deforestationExplosive growth of secondary roads is linked to widespread tropical deforestation

Explosive growth of secondary roads is linked to widespread tropical deforestation

Título Explosive growth of secondary roads is linked to widespread tropical deforestation Autores Jayden E.…

7 de março de 2025
Sistema de Alerta de Desmatamento (SAD) – Janeiro de 2025Sistema de Alerta de Desmatamento (SAD) – Janeiro de 2025

Sistema de Alerta de Desmatamento (SAD) – Janeiro de 2025

Amorim, L., Ferreira, R., Dias, M., Souza Jr., C., & Veríssimo, A. Sistema de Alerta…

21 de fevereiro de 2025
Resultados frigoríficos 2024Resultados frigoríficos 2024

Resultados frigoríficos 2024

Título Resultados frigoríficos 2024 Autores Instituto do Homem e Meio Ambiente da Amazônia (Imazon) Instituto…

5 de fevereiro de 2025
RESUMO EXECUTIVO – Cenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados do Programa Amazônia ProtegeRESUMO EXECUTIVO – Cenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados do Programa Amazônia Protege

RESUMO EXECUTIVO – Cenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados do Programa Amazônia Protege

Título RESUMO EXECUTIVO - Cenário da punição a desmatadores ilegais na Amazônia: Atualização dos resultados…

31 de janeiro de 2025