Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data

Parente, Leandro; Taquary, Evandro; Silva, Ana Paula; Souza, Carlos. Ferreira, Laerte. Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data. Remote Sensing, 3 December 2019. https://doi.org/10.3390/rs11232881

Abstract: The rapid growth of satellites orbiting the planet is generating massive amounts of data for Earth science applications. Concurrently, state-of-the-art deep-learning-based algorithms and cloud computing infrastructure have become available with a great potential to revolutionize the image processing of satellite remote sensing. Within this context, this study evaluated, based on thousands of PlanetScope images obtained over a 12-month period, the performance of three machine learning approaches (random forest, long short-term memory-LSTM, and U-Net). We applied these approaches to mapped pasturelands in a Central Brazil region. The deep learning algorithms were implemented using TensorFlow, while the random forest utilized the Google Earth Engine platform. The accuracy assessment presented F1 scores for U-Net, LSTM, and random forest of, respectively, 96.94%, 98.83%, and 95.53% in the validation data, and 94.06%, 87.97%, and 82.57% in the test data, indicating a better classification efficiency using the deep learning approaches. Although the use of deep learning algorithms depends on a high investment in calibration samples and the generalization of these methods requires further investigations, our results suggest that the neural network architectures developed in this study can be used to map large geographic regions that consider a wide variety of satellite data (e.g., PlanetScope, Sentinel-2, Landsat-8).

Download

This post was published on 3 de dezembro de 2019

Notícias recentes

Activity Report 2023

Letter from the Executive Board Hope. This was the feeling that overflowed through the veins…

18 de novembro de 2024

Radar Verde União Europeia

Instituto do Homem e Meio Ambiente da Amazônia (Imazon), Instituto O Mundo Que Queremos e…

14 de novembro de 2024

Secondary growth deforestation leakage in the Pará beef cattle purchasing zone

Junior, Luis Oliveira; Filho, Jailson S. de Souza; Ferreira, Bruno Gama; Souza Jr, Carlos. https://isprs-archives.copernicus.org/articles/XLVIII-3-2024/371/2024/.…

7 de novembro de 2024

AI-based Validation of Deforestation Using High-Resolution Satellite Imagery in the Brazilian Amazon

Wang, Zhihao; Li, Zhili; Xie, Yiqun; Souza Jr, Carlos; Pinheiro, Stefany. https://isprs-archives.copernicus.org/articles/XLVIII-3-2024/583/2024/ Abstract Forests play…

7 de novembro de 2024

Mapping Selective Logging in the Amazon with Artificial Intelligence and Sentinel-2

Filho, Jailson S. de Souza; Damasceno, Camila; Cardoso, Dalton R. Ruy Secco; Souza Jr, Carlos. https://isprs-archives.copernicus.org/articles/XLVIII-3-2024/121/2024/…

7 de novembro de 2024

Relatório de Atividades 2023

Carta da Diretoria Esperança. Esse foi o sentimento que transbordou pelas veias dos amazônidas em…

4 de novembro de 2024