Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data

facebook - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datafacebook - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datalinkedin - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datalinkedin - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datawhatsapp - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datawhatsapp - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datax - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datax - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Dataa2a - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Dataa2a - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data

Parente, Leandro; Taquary, Evandro; Silva, Ana Paula; Souza, Carlos. Ferreira, Laerte. Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data. Remote Sensing, 3 December 2019. https://doi.org/10.3390/rs11232881

Abstract: The rapid growth of satellites orbiting the planet is generating massive amounts of data for Earth science applications. Concurrently, state-of-the-art deep-learning-based algorithms and cloud computing infrastructure have become available with a great potential to revolutionize the image processing of satellite remote sensing. Within this context, this study evaluated, based on thousands of PlanetScope images obtained over a 12-month period, the performance of three machine learning approaches (random forest, long short-term memory-LSTM, and U-Net). We applied these approaches to mapped pasturelands in a Central Brazil region. The deep learning algorithms were implemented using TensorFlow, while the random forest utilized the Google Earth Engine platform. The accuracy assessment presented F1 scores for U-Net, LSTM, and random forest of, respectively, 96.94%, 98.83%, and 95.53% in the validation data, and 94.06%, 87.97%, and 82.57% in the test data, indicating a better classification efficiency using the deep learning approaches. Although the use of deep learning algorithms depends on a high investment in calibration samples and the generalization of these methods requires further investigations, our results suggest that the neural network architectures developed in this study can be used to map large geographic regions that consider a wide variety of satellite data (e.g., PlanetScope, Sentinel-2, Landsat-8).

Download

facebook - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datafacebook - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datalinkedin - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datalinkedin - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datawhatsapp - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datawhatsapp - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datax - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Datax - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Dataa2a - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Dataa2a - Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data

This post was published on 3 de dezembro de 2019

AddThis Website Tools

Notícias recentes

Sistema de Alerta de Desmatamento (SAD) – Março de 2025Sistema de Alerta de Desmatamento (SAD) – Março de 2025

Sistema de Alerta de Desmatamento (SAD) – Março de 2025

Amorim, L., Ferreira, R., Dias, M., Souza Jr., C., & Veríssimo, A. Sistema de Alerta…

25 de abril de 2025
A Vocação da Restauração Florestal na Amazônia com Base na Vegetação SecundáriaA Vocação da Restauração Florestal na Amazônia com Base na Vegetação Secundária

A Vocação da Restauração Florestal na Amazônia com Base na Vegetação Secundária

Título A Vocação da Restauração Florestal na Amazônia com Base na Vegetação Secundária Autores Jayne…

30 de março de 2025
Sistema de Alerta de Desmatamento (SAD) – Fevereiro de 2025Sistema de Alerta de Desmatamento (SAD) – Fevereiro de 2025

Sistema de Alerta de Desmatamento (SAD) – Fevereiro de 2025

Amorim, L., Ferreira, R., Dias, M., Souza Jr., C., & Veríssimo, A. Sistema de Alerta…

27 de março de 2025
Lições da Expansão da Pecuária Bovina no Brasil (2000-2023) para uma Produção Sustentável e EficienteLições da Expansão da Pecuária Bovina no Brasil (2000-2023) para uma Produção Sustentável e Eficiente

Lições da Expansão da Pecuária Bovina no Brasil (2000-2023) para uma Produção Sustentável e Eficiente

Título Lições da Expansão da Pecuária Bovina no Brasil (2000-2023) para uma Produção Sustentável e…

13 de março de 2025
Explosive growth of secondary roads is linked to widespread tropical deforestationExplosive growth of secondary roads is linked to widespread tropical deforestation

Explosive growth of secondary roads is linked to widespread tropical deforestation

Título Explosive growth of secondary roads is linked to widespread tropical deforestation Autores Jayden E.…

7 de março de 2025
Sistema de Alerta de Desmatamento (SAD) – Janeiro de 2025Sistema de Alerta de Desmatamento (SAD) – Janeiro de 2025

Sistema de Alerta de Desmatamento (SAD) – Janeiro de 2025

Amorim, L., Ferreira, R., Dias, M., Souza Jr., C., & Veríssimo, A. Sistema de Alerta…

21 de fevereiro de 2025